Here, we will consider the data `mtcars`

to get descriptive statistics in R. You can use a dataset of your own choice.

### Getting Dataset Information in R

Before performing any descriptive or inferential statistics, it is better to get some basic information about the data. It will help to understand the mode (type) of variables in the datasets.

# attach the mtcars datasets attach(mtcars) # data structure str(mtcars)

You will see the dataset `mtcars`

contains 32 observations and 11 variables.

It is also best to inspect the first and last rows of the dataset.

# for the first six rows head(mtcars) # for the last six rows tail(mtcars)

#### Getting Numerical Descriptive Statistics in R

To get a quick overview of the dataset, the `summary( )`

function can also be used. We can use the `summary( )`

function separately for each of the variables in the dataset.

summary(mtcars) summary(mpg) summary(gear)

Note that the `summary( )`

the function provides five-number summary statistics (minimum, first quartile, median, third quartile, and maximum) and an average value of the variable used as the argument. Note the difference between the output of the following code.

summary(cyl) summary( factor(cyl) )

Remember that if for a certain variable, the datatype is defined or changed R will automatically choose an appropriate descriptive statistics in R. If categorical variables are defined as a factor, the `summary( )`

function will result in a frequency table.

Some other functions can be used instead of `summary()`

function.

# average value mean(mpg) # median value median(mpg) # minimum value min(mpg) # maximum value max(mpg) # Quatiles, percentiles, deciles quantile(mpg) quantile(mpg, probs=c(10, 20, 30, 70, 90)) # variance and standard deviation var(mpg) sd(mpg) # Inter-quartile range IQR(mpg) # Range range(mpg)

### Creating a Frequency Table in R

We can produce a frequency table and a relative frequency table for any categorical variable.

freq <- table(cyl); freq rf <- prop.table(freq) barplot(freq) barplot(rf) pie(freq) pie(rf)

### Creating a Contingency Table (Cross-Tabulation)

The contingency table can be used to summarize the relationship between two categorical variables. The `xtab( )`

or `table( )`

functions can be used to produce cross-tabulation (contingency table).

xtabs(~cyl + gear, data = mtcars) table(cyl, gear)

### Finding a Correlation between Variables

The `cor( )`

function can be used to find the degree of relationship between variables using Pearson’s method.

cor(mpg, wt)

However, if variables are heavily skewed, the non-parametric method Spearman’s correlation can be used.

cor(mpg, wt, method = "spearman")

The scatter plot can be drawn using plot( ) a function.

plot(mpg ~ wt)

Learn more about `plot( )`

function: `plot( )`

function

Visit: Learn Basic Statistics