The glm Function in R

Learn about the glm function in R with this comprehensive Q&A guide. Understand logistic regression, Poisson regression, syntax, families, key components, use cases, model diagnostics, and goodness of fit. Includes a practical example for logistic regression using glm() function in R.

What is the glm function in the R language?

The glm (Generalized Linear Models) function in R is a powerful tool for fitting linear models to data where the response variable may have a non-normal distribution. It extends the capabilities of traditional linear regression to handle various types of response variables through the use of link functions and exponential family distributions.

Since the distribution of the response depends on the stimulus variables through a single linear function only, the same mechanism as was used for linear models can still be used to specify the linear part of a generalized model.

What is Logistic Regression?

Logistic regression is used to predict the binary outcome from the given set of continuous predictor variables.

What is the Poisson Regression?

The Poisson regression is used to predict the outcome variable, which represents counts from the given set of continuous predictor variables.

What is the general syntax of the glm function in R Language?

The general syntax to fit a Generalized Linear Model is glm() function in R is:

glm(formula, family = gaussian, data, weights, subset, na.action, start = NULL,
    etastart, mustart, offset, control = list(...), model = TRUE, method = "glm.fit",
    x = FALSE, y = TRUE, contrasts = NULL, ...)

What are families in R?

The class of Generalized Linear Models handled by facilities supplied in R includes Gaussian, Binomial, Poisson, Inverse Gaussian, and Gamma response distributions, and also quasi-likelihood models where the response distribution is not explicitly specified. In the latter case, the variance function must be specified as a function of the mean, but in other cases, this function is implied by the response distribution.

Write about the Key components of glm Function in R

Formula

It specifies the relationship between variables, similar to lm(). For example,

y ~ x1 + x2 + x3  # main effects
y ~ x1*x2         # main effects plus interaction
y ~ .    

Family

It defines the error distribution and link function. The Common families are:

  • gaussian(): Normal distribution (default)
  • binomial(): Logistic regression (binary outcomes)
  • poisson(): Poisson regression (count data)
  • Gamma(): Gamma regression
  • inverse.gaussian(): Inverse Gaussian distribution

What are the common use cases of glm() function?

Each family has link functions (e.g., logit for binomial, log for Poisson).

Logistic Regression (Binary Outcomes

model <- glm(outcome ~ predictor1 + predictor2, family = binomial(link = "logit"),
             data = mydata)

Poisson Regression (Count Data)

model <- glm(count ~ treatment + offset(log(exposure)), family = poisson(link = "log"),
             data = count_data)

What statistics can be computed after fitting glm() model?

After fitting a model, one can use:

summary(model)   # Detailed output including coefficients
coef(model)      # Model coefficients
confint(model)   # Confidence intervals
predict(model)   # Predicted values

What are model diagnostics and goodness-of-fit?

The following are built-in glm() model diagnostics and goodness of fit:

anova(model, test = "Chisq")  # Analysis of deviance
residuals(model)              # Various residual types available
plot(model)                   # Diagnostic plots

Give an example of logistic regression fitting using glm() function.

Consider the mtcars data set, where am is the response variable

# Fit model
data(mtcars)
model <- glm(am ~ hp + wt, family = binomial, data = mtcars)

# View results
summary(model)

# Predict probabilities
predict(model, type = "response")

# Plot
par(mfrow = c(2, 2))
plot(model)
glm() Function in R Language

Tips for effective Use of glm() function?

  1. Always check model assumptions and diagnostics
  2. For binomial models, the response can be:
    • A factor (first level = failure, others = success)
    • A numeric vector of 0/1 values
    • A two-column matrix of successes/failures
  3. Use drop1() or add1() for model selection
  4. Consider glm.nb() from the MASS package for overdispersed count data

The glm() function in R is fundamental for many statistical analyses in R, providing flexibility to handle various types of response variables beyond normal distributions.

Try Pedagogy Quizzes

Use of Important Functions in R

Looking for the most important functions in R? This blog post answers key questions like creating frequency tables (table()), redirecting output (sink()), transposing data, calculating standard deviation, performing t-tests, ANOVA, and more. Perfect for R beginners and data analysts!

  • Important functions in R
  • R programming cheat sheet
  • Frequency table in R (table())
  • How to use sink() in R
  • Transpose data in R (t())
  • Standard deviation in R (sd())
  • T-test, ANOVA, and Shapiro-Wilk test in R
  • Correlation and covariance in R
  • Scatterplot matrices (pairs())
  • Diagnostic plots in R

This Important functions in R, Q&A-style guide covers essential R functions with clear examples, helping you master data manipulation, statistical tests, and visualization in R. Whether you’re a beginner or an intermediate user, this post will strengthen your R programming skills!

Which function is used to create a frequency table in R?

In R, a frequency table can be created by using table() function.

What is the use of sink() function?

The sink() function in R is used to redirect R output (such as the results of computations, printed messages, or console output) to a file instead of displaying it in the console. This is particularly useful for saving logs, results of analyses, or any other text output generated by R scripts.

Explain what transpose is and how it is performed.

Transpose is used for reshaping the data, which is used for analysis. Transpose is performed by t() function.

What is the length function in R?

The length() function in R gets or sets the length of a vector (list) or other objects. The length() function can be used for all R objects. For an environment, it returns the object number in it. NULL returns 0.

What is the difference between seq(4) and seq_along(4)?

seq(4) means vector from 1 to 4 (c(1,2,3,4)) whereas seq_along(4) means a vector of the length(4) or 1 (c(1)).

Vector $v$ is c(1,2,3,4) and list $x$ is list(5:8). What is the output of v*x[[1]]?

[1] 5 12 21 32s

Important functions in R Language

How do you get the standard deviation for a vector $x$?

sd(x, na.rm=TRUE)

$X$ is the vector c(5,9.2,3,8.51,NA). What is the output of mean(x)?

The output will be NA.

Important function in R Programming

How can one compute correlation and covariance in R?

Correlation is produced by cor() and covariance is produced by cov() function.

How to create scatterplot matrices?

pair() or splom() function are used to create scatterplot matrices.

What is the use of diagnostic plots?

It is used to check the normality, heteroscedasticity, and influential observations.

What is principal() function?

It is defined in the psych package that is used to rotate and extract the principal components.

Define mshapiro.test()?

It is a function which defined in the mvnormtest package. It produces the Shapiro-Wilk test for multivariate normality.

Define barlett.test().

The barlett.test() is used to provide a parametric k-sample test of the equality of variances.

Define anova() function.

The anova() is used to compare the nested models. Read more One-Way ANOVA

Define plotmeans().

It is defined under the gplots package, which includes confidence intervals, and it produces a mean plot for single factors.

Define loglm() function.

The loglm() function is used to create log-linear models.

What is t-tests() in R?

We use it to determine whether the means of two groups are equal or not by using t.test() function.

Statistics and Data Analysis

Summarizing Data in R Base Package

Introduction to Summarizing Data in R

Data summarization (getting different summary statistics) is a fundamental step in exploratory data analysis (EDA). Summarizing data in R Language helps analysts to understand the patterns, detect anomalies, and derive insights. While modern R packages like dplyr and data.table offers streamlined approaches. However, Base R remains a powerful and efficient tool for quick data summarization without additional dependencies (packages).

This guide explores essential Base R functions for summarizing data, from basic statistics to advanced grouped operations, ensuring you can efficiently analyze datasets right out of the box.

For learning purposes, we will use the mtcars data set.

Key Functions for Basic Summary Statistics

There are several Base R functions for computing summary statistics. The summary() function offers a quick overview of a dataset, displaying minimum, maximum, mean, median, and quartiles for numerical variables. On the other hand, the categorical variables are summarized with frequency counts. For more specific metrics, functions like mean(), median(), sd(), and var() calculate central tendency and dispersion, while min() and max() functions can be used to identify the data range. These functions are particularly useful when combined with na.rm = TRUE to handle missing values. For example, applying summary(mtcars) gives an immediate snapshot of the dataset, while mean(mtcars$mpg, na.rm = TRUE) computes the average miles per gallon.

Frequency Counts and Cross-Tabulations

When working with categorical data, the table() function is indispensable for generating frequency distributions. It counts occurrences of unique values, making it ideal for summarizing factors or discrete variables. For more complex relationships, xtabs() or ftable() can create cross-tabulations, revealing interactions between multiple categorical variables. For instance, table(mtcars$cyl) shows how many cars have 4, 6, or 8 cylinders, while xtabs(~ gear + cyl, data = mtcars) presenting a contingency table between gears and cylinders.

attach(mtcars)

# Frequency of cylinders
table(cyl)

# contingency table of gears and cylinders
xtabs(~ gear + cyl, data = mtcars)
Summarizing Data in R Language

Group-Wise Summarization Using aggregate() and by()

To compute summary statistics by groups, Base R offers aggregate() and by(). The aggregate() function splits data into subsets and applies a summary function, such as mean or sum, to each group. For example, aggregate(mpg ~ cyl, data = mtcars, FUN = mean) calculate the average MPG per cylinder group. Meanwhile, by() provides more flexibility, allowing custom functions to be applied across groups. While tapply() is another alternative for vector-based grouping, aggregate() is often preferred for its formula interface and cleaner output.

# Average for each cylinder of the vehicle
aggregate(mpg ~ cyl, data = mtcars, FUN = mean)

## Output
  cyl      mpg
1   4 26.66364
2   6 19.74286
3   8 15.10000

Advanced Techniques: Quantiles and Custom Summaries

Beyond basic summaries, Base R supports advanced techniques like percentile analysis using quantile(), which helps assess data distribution by returning specified percentiles (e.g., quantile(mtcars$mpg, probs = c(0.25, 0.5, 0.75))). For customized summaries, users can define their own functions and apply them using sapply() or lapply(). This approach is useful when needing tailored metrics, such as trimmed means or confidence intervals. Additionally, combining these functions with plotting tools like boxplot() or hist() can further enhance data interpretation.

# percentiles
quantile(mtcars$mpg, probs = c(0.25, 0.5, 0.75))

## Output
   25%    50%    75% 
15.425 19.200 22.800 

boxplot(quantile(mtcars$mpg, probs = c(0.25, 0.5, 0.75)) )
Data Visualization Summarizing Data in R Base Package

When to Use Base R vs. Tidyverse for Summarization

While Base R is efficient and lightweight, the Tidyverse (particularly dplyr) offers a more readable syntax for complex operations. Functions like summarize() and group_by() simplify chained operations, making them preferable for large-scale data wrangling. However, Base R remains advantageous for quick analyses, legacy code, or environments where installing additional packages is restricted. Understanding both approaches ensures flexibility in different analytical scenarios.

Best Effective Practices for Summarizing Data in R

To maximize efficiency, always handle missing values explicitly using na.rm = TRUE in statistical functions. For large datasets, consider optimizing performance by pre-filtering data or using vectorized operations. Visualizing summaries with basic plots (e.g., hist(), boxplot()) can provide immediate insights. Finally, documenting summary steps ensures reproducibility, whether in scripts, R Markdown, or Shiny applications.

In summary, the Base R provides a robust toolkit for data summarization, from simple descriptive statistics to advanced grouped analyses. By mastering functions like summary(), table(), aggregate(), and quantile(), analysts can efficiently explore datasets without relying on external packages. While modern alternatives like dplyr enhance readability for complex tasks, Base R’s simplicity and universality make it an essential skill for every R programmer. Practicing these techniques on real-world datasets will solidify your understanding and improve your data analysis workflow.

Dimensionality Reduction in Machine Learning